
Feasibility Analysis of Ultra High Frame Rate
Visual Servoing on FPGA and SIMD Processor

Yifan He, Zhenyu Ye, Dongrui She, Bart Mesman, and Henk Corporaal

Eindhoven University of Technology, the Netherlands
{y.he, z.ye, d.she, b.mesman, h.corporaal}@tue.nl

Abstract. Visual servoing has been proven to obtain better perfor-
mance than mechanical encoders for position acquisition. However, the
often computationally intensive vision algorithms and the ever growing
demands for higher frame rate make its realization very challenging. This
work performs a case study on a typical industrial application, organic
light emitting diode (OLED) screen printing, and demonstrates the fea-
sibility of achieving ultra high frame rate visual servoing applications
on both field programmable gate array (FPGA) and single instruction
multiple data (SIMD) processors. We optimize the existing vision pro-
cessing algorithm and propose a scalable FPGA implementation, which
processes a frame within 102 µs. Though a dedicated FPGA implemen-
tation is extremely efficient, lack of flexibility and considerable amount
of implementation time are two of its clear drawbacks. As an alterna-
tive, we propose a reconfigurable wide SIMD processor, which balances
among efficiency, flexibility, and implementation effort. For input frames
of 120 × 45 resolution, our SIMD can process a frame within 232 µs,
sufficient to provide a throughput of 1000fps with less than 1ms la-
tency for the whole vision servoing system. Compared to the reference
realization on MicroBlaze, the proposed SIMD processor achieves a 21×
performance improvement.

Keywords: Visual Servoing, FPGA, Reconfiguration, Wide SIMD

1 Introduction

Visual servoing applies image sensors instead of mechanical encoders for posi-
tion acquisition. On one hand, it reduces the number and accuracy requirement
of encoders, and has been proven to obtain better performance than encoders
in several applications, e.g., inkjet printing [2, 9]. On the other hand, it also
dramatically increases the computing workload due to the often computation-
ally intensive vision algorithms. The ever growing demand for higher frame rate
makes the realization of visual servoing systems even more challenging [3, 4].

To address the issue of limited computing power, special purpose hardware
is often used. Among them, the field programmable gate array (FPGA) is one
of the most cost effective options. Though a dedicated FPGA implementation
is usually of extreme efficiency, lack of flexibility and considerable amount of



implementation effort are two of its clear drawbacks. On the other hand, wide
single instruction multiple data (SIMD) processors are very popular among the
stream processors for vision/image processing [1, 6, 7], because (i) the massive
number of processing elements (PEs) inside an SIMD processor potentially ren-
ders very high throughput; (ii) massive parallelism in streaming applications
typically shows up as data-level parallelism (DLP) which is naturally supported
by SIMD architectures; and (iii) SIMD is a low-power architecture as it applies
the same instructions to all PEs. The low-power feature is crucial to an embed-
ded system. For a non-embedded system, this feature is sill very important as
the design of the heat removal system can be greatly simplified. All these merits
make SIMD architecture a very interesting candidate for visual servoing.

In order to demonstrate the feasibility of achieving ultra high frame rate
visual servoing on both FPGA and SIMD processor, a typical industrial ap-
plication, organic light emitting diode (OLED) screen printing, is analyzed in
detail. Firstly, we improve the existing OLED center detection algorithm devel-
oped by Roel [9]. The proposed vision pipeline is not only more robust, but also
more friendly to embedded processors and FPGA/ASIC realization. Only 32-bit
fixed-point operations are used, while rendering sub-pixel accuracy. Moreover,
the processing time is deterministic, which is crucial for latency oriented applica-
tions. After developing the visual pipeline, we propose an FPGA implementation
with a processing time of only 102 µs on input image size of 120× 45. However,
realizing a dedicated visual servoing application implementation in FPGA re-
quires considerable amount of effort, and a tiny change in the algorithm may
cause re-design of the whole circuit. To balance among efficiency, flexibility, and
implementation effort, we also propose a highly-efficient SIMD architecture for
vision servoing applications, which is based on our previous design [6]. The num-
ber of PEs in this proposed SIMD processor can be dynamically reconfigured
to match the resolution of the input frame and/or the performance requirement
of the application. For input frames of size 120 × 45, our SIMD processor can
process a frame within 232 µs, sufficient to meet the throughput requirement of
1000 fps with a latency of less than 1 ms for the whole vision servoing system.
Compared to the reference realization on MicroBlaze [11], the proposed SIMD
processor achieved a 21× performance improvement.

The remainder of this paper is organized as follows. In section 2, we show
the visual servoing setup and our proposed vision pipeline. In Section 3, we
elaborate the proposed FPGA implementation and performance analysis. The
proposed reconfigurable wide SIMD processor architecture and mapping of the
vision pipeline are presented in detail in Section 4. Finally, we draw the conclu-
sions of this work in Section 5.

2 Visual Servoing System & Algorithm Development

The experimental visual servoing setup, which is described in [2], is shown in
Fig. 1(a). The camera and lights are fixed at the top of the setup. The OLED
structures are mounted on the moving X-Y table, which moves on a 2D plane.



(a) Visual Servoing Setup (b) System Archi-
tecture

Fig. 1. The Experimental Setup and System Architecture

Fig. 2. System Delay Breakdown (1000 fps)

The system architecture is described in Fig. 1(b). At each frame interval, the
camera takes an image of the moving OLED structures. The image is then
transferred to the vision processing platform through Ethernet or Camera Link
interface. In the vision processing step, which is the main focus of this paper, the
vision processing platform processes the input image and localizes the centers
of the OLED structures. The data-acquisition is realized by using EtherCAT,
where DAC, I/O, and ADC modules are installed to drive the current amplifiers
of the motors. Based on the relative positions of the detected OLED centers,
X-Y table is then driven to a proper position.

In visual servoing systems, encoders are typically sampled at 1kHz [10]. To
ensure the stability, we set the same sample rate (1000 fps) as the basic require-
ment for our visual servoing system. The timing breakdown of the complete
visual servoing system is shown in Fig. 2, which consists of four components:
(i) exposure of the image sensor; (ii) data readout from the image sensor; (iii)
vision pipeline computing; and (iv) control algorithm. The required exposure
time is measured on a real setup with the OLED structure. The exposure time
depends on the lighting condition and the type of surface of the plate. It can
vary from 10 µs for paper [2] to 400 µs for an OLED wafer [9]. The image read
out time is measured on the CameraLink interface. The control algorithm takes
a relatively small amount of time, which is common in industrial applications.

To reduce the delay of the system, only the Region Of Interest (ROI) of the
image taken by the camera is read out and processed. A typical size of ROI for
our OLED substrate localization application is 120×45 pixels or 160×55 pixels.
The exposure time and image readout time is deterministic for a specific ROI
size, lighting source, and camera interface. The timing of the control part is also



deterministic given a specific mechanical setup. Therefore, the major source of
reduction in the delay can only come from the vision processing component. In
order to achieve 1000fps throughput as well as 1 ms latency, the timing budget
remaining for vision processing is only about 350 µs.

In order to meet this tight budget, we firstly optimize the existing vision
pipeline, which is based on a previous PC-based implementation [9]. This PC-
based implementation is suboptimal for FPGA/ASIC and embedded processor
realization. On one hand, the using of contour tracing algorithm in the PC-based
vision pipeline has several drawbacks: (i) the processing time is not deterministic;
(ii) less robust due to higher false detection rate, e.g., fail to detect the OLEDs
with scratches on them in the bottom image of Fig. 3(a); and (iii) less efficient on
parallel architectures. By utilizing the characteristics of the repetitive structures,
this paper propose an erosion-projection method (Fig. 4) to replace contour
tracing to solve the aforementioned issues. The input of the pipeline is a region
of interest (ROI), and the output of the pipeline are the coordinates of the centers
of OLED structures. The input image is binarized with the optimum threshold
calculated by the OTSU algorithm [8]. After binarization, noise and unrelated
patterns are removed through the erosion step, remaining only the dominant
structures (i.e., OLEDs). The number of erosion iterations is determined by the
feature to be detected, the size of the unrelated patterns, and the quality of

(a) OLED Structures (b) Detected Centers

Fig. 3. OLED Structures and Detected Centers

Fig. 4. Proposed Vision Pipeline for OLED Center Detection



the picture. In our case, two iterations are applied to a 120 × 45 input frame.
Reduction of the segmented OLED structures into two vectors are performed
by horizontal and vertical projection. The rough centers of the OLED structure
are found by searching the two vectors reduced from projection. The accurate
OLED centers are finally located by the weighted center-of-gravity inside each
bonding box (Fig. 3(b)). Every stage of this new pipeline has a deterministic
execution time, which leads to determinism of the complete vision pipeline. On
the other hand, the floating point operations are usually too costly for embedded
processor and dedicated hardware realization. Therefore, floating-point to fixed-
point transformation is applied carefully. The new algorithm only uses 32-bit
fixed-point operations, yet still renders sub-pixel accuracy. This new approach
reduces the complexity of the algorithm, provides improved robustness, and is
also more friendly to embedded processors and dedicated hardware realization.

3 Feasibility Analysis of FPGA Realization

Before implementing the vision pipeline on FPGA, we first analyze the sequential
reference implementation on MicroBlaze. MicroBlaze is a simple soft-core with
a RISC instruction set [11]. It is chosen because it represents the typical general
purpose processors (GPP) in embedded systems. Also MicroBlaze is configurable
and easy to verify on FPGA. Although its performance is relatively low, it can
still be served as a good reference of a dedicated FPGA implementation. The
MicroBlaze used here has the following configuration:

– 5-stage pipeline.

– 32-bit multiplier and 32-bit divider.

– All instructions and data are in local memory with one cycle latency.

For a 120 × 45 resolution input frame, the execution time of the MicroBlaze
implementation is almost 5 ms at 125 MHz, which is over 14 times of the 350 µs

Fig. 5. Cycle Breakdown on MicroBlaze (4.92 ms/frame for image size of 120× 45)



Fig. 6. Block Diagram of the vision pipeline implemented on FPGA

budget available for vision processing. Fig. 5 shows the cycle count breakdown
of the vision pipeline.

To address the issue of limited computing power of the soft-core on FPGA,
we propose a dedicated implementation (Fig. 6). Each stage of the vision pipeline
is realized with dedicated modules, which runs as a synchronous systolic array.
Frames is streamed through the pipeline, and intermediate values between each
stage are buffered in Block Random Access Memory (BRAM). Table 1 shows the
detailed timing breakdown for image of size 120 × 45. This implementation can
run at 160 MHz on Virtex II-Pro FPGA (XC2VP30). The resource utilization
is less than 26%. We can see that the proposed FPGA implementation achieves
a speed-up of 48× (comparing to the reference MicroBlaze implementation),
resulting in an execution time of 102 µs, which is far below the 350 µs budget.
Since our FPGA implementation is a parameterized design, it is easy to adapt to
input images of different sizes too. Table 2 presents the performance at different
resolutions, where w is the image width and h is the image height. It shows
that the proposed design has very good scalability. We conclude that FPGA is
a feasible choice to achieve ultra high frame rate visual servoing.

The vision pipeline can be further accelerated by utilizing more FPGA hard-
ware resources. However, since the vision pipeline is no longer a bottleneck,
further acceleration has a diminishing return in reducing the delay.

4 Feasibility Analysis of SIMD Realization

We have shown in Section 3 that a dedicated FPGA implementation is very
suitable for ultra high frame rate visual servoing. However, lack of flexibility and
considerable amount of implementation effort are two of its clear drawbacks. As
an alternative, we exploit the feasibility of realizing ultra high frame rate visual
servoing on single instruction multiple data (SIMD) processor.

Wide SIMD processors are very popular among the stream processors for
vision/image processing [1, 6, 7]. The massive number of processing elements
(PEs) in it potentially renders very high throughput. And massive parallelism
in streaming applications typically shows up as data-level parallelism (DLP)



Table 1. Cycle Breakdown of FPGA Implementation (image size of 120× 45)

Kernel
MicroBlaze Proposed FPGA

Speed-up
(125 MHz) (160 MHz)

Initialize 2819 256 11.01×
OTSU: Hist. & CH/CIA 74797 5659 13.22×

OTSU: Max. σ2
B 19936 312 63.90×

Binarization 70201 5401 13.00×
Erosion 284819 97 2936×

Find-Rough-Center 78832 170 463.72×
Weighted Center of Gravity 83790 4501 18.62×

Total Cycles 615194 16396 37.5×
Time 4.92 ms 102 µs 48.2×

Table 2. Performance Scalability on the Proposed FPGA Implementation

Kernel 120× 45 160× 55

Initialize 256 256 O(1)

OTSU: Hist. & CH/CIA 5659 9059 O(wh)

OTSU: Max. σ2
B 312 312 O(1)

Binarization 5401 8801 O(wh)

Erosion 97 117 O(h)

Find-Rough-Center 170 220 O(w+h)

Weighted Center of Gravity 4501 7335 O(wh)

Total Cycles 16396 26100

Time 102 µs 163 µs

which is naturally supported by SIMD architectures. Moreover, SIMD is a low-
power architecture which is crucial to embedded systems. All these merits make
SIMD architecture a very interesting candidate for visual servoing.

If we look at the cycle breakdown on MicroBlaze (Fig. 5) in more detail, we
will find that over 95% of the total execution time is spent on five kernels: his-
togram + Cumulative Histogram and Cumulative Intensive Area (CH/CIA), bi-
narization, erosion, find-rough-center, and weighted center-of-gravity. The com-
putation part of these kernels are mostly pixel-wise operations with few depen-
dency (thus DLP), which makes them very suitable for SIMD processing.

4.1 Proposed Reconfigurable Wide SIMD Architecture

The proposed reconfigurable wide SIMD processor for visual servoing is based
on Xetal-Pro, our ultra low-energy and high-throughput SIMD processor [6].
Fig. 7 presents its block diagram. The control processor (CP) is a 32-bit MIPS-
like processor, equipped with a 32-bit 1-cycle multiplier and a 32-bit 16-cycle
pipelined divider. The main task of the CP is to control the program flow, to
handle interrupts, to configure other blocks, and to communicate with the out-
side world. The processing elements (PEs) and their corresponding scratchpad
memory (SM) and frame memory (FM) banks are partitioned into tiles. Each
tile consists of 8 PEs. This is based on the reconfiguration granularity require-
ment as well as the layout constraints. In the current implementation, there are



Fig. 7. Block Diagram of the Reconfigurable Wide SIMD Processor

320 PEs in total (40 tiles). The 128bit×1024 pseudo-dual port SRAM per PE
constitutes the frame memory (FM). The relatively large capacity of the FM
allows on-chip storage of multiple VGA frames or images with higher resolution.
The SM is a 32-entry scratchpad memory to exploit the often available data
locality and to reduce the energy consumption of accessing the large FM. The
communication network between PEs and SMs enables each PE to directly ac-
cess data from its left and right neighbors. The whole system runs at 125MHz
with 1.2V supply voltage under TSMC 65 nm technology, and offers a peak
throughput of 80 GOPS (counting multiply and add operations only).

With 320 PEs, the proposed SIMD processor is able to provide a tremendous
amount of processing power. However, in practice, applications may not require
or cannot fully utilize its entire capability. For example, in our OLED substrate
localization application, two typical image resolutions are 120 × 45 pixels and
160 × 55 pixels, which lead to natural vector sizes of 120 and 160 respectively.
Thus, only 120 PEs (15 tiles) or 160 PEs (20 tiles) is required for each case.
The processor must be configured in such a way that the number of active PEs
and the corresponding communication network meet this requirement. Another
important motivation for a reconfigurable SIMD processor is the power con-
sumption. When not all PEs are required, the unused PEs can be fully shut
down to save power consumption.

The number of active tiles of the proposed SIMD processor is dynamically
configurable to meet various vector lengths or performance requirements. In or-
der to enable this feature, two types of tiles are designed, which are only of slight
difference. Basic Tile (Fig. 8(a)) composes the minimal system (8-PE SIMD)
when MUX0 is configured to choose only among immediate number (imm), con-
stant ‘0’, and data read from PE7’s own scratchpad memory. Augmented Tiles
(Fig. 8(b)) can be enabled/disabled according to the application. To configure
an SIMD processor with M+1 tiles, MUX0 ∼ MUXM−1 are fixed to their right
neighbor (i.e., data from next PE0’s SM ) and MUXM has the freedom to choose
among the other three inputs except its right neighbor. The configuration is done
through setting the control registers (CTRL0 ∼ CTRLM ) by CP at run time.

Each PE has a two-stage pipeline and shares the instruction fetch and de-
code stage of the CP. 16-bit ADD/SUB, MUL, MAC, and logical operations are
supported. All instructions are executed in a single cycle. The global sum of the
ACCU registers (one per PE ) is calculated by an adder tree. The latency of the



(a)

(b)

Fig. 8. (a) Basic Tile; (b) Augmented Tile

adder tree is three cycles. Another main differences between this proposed SIMD
and our previous Xetal-Pro is that local indirect addressing is supported with
the local address generator. It has been shown that local indirect addressing
can significantly improve the performance of some applications (e.g., Histogram,
Hough Transform) in a massively-parallel SIMD processor [5].

4.2 Visual Servoing on the Proposed Wide SIMD Processor

Based on the analysis of the kernels in the vision pipeline, the parts that can
benefit from vectorization are identified. With this information, the kernels of
the vision pipeline are partitioned into (i) the vector part, which is executed on
the PE array of the proposed SIMD processor; and (ii) the scalar part, which
is processed on the CP of the proposed SIMD processor.

There are two main sources of inefficiency in the sequential implementation.
Firstly, the fundamental limitation in operation throughput makes it impossible
to achieve high performance. Secondly, the overheads such as loop control and
address calculation greatly reduce the effective computational throughput. On
the proposed architecture, the PE array provides a peak throughput of 2 ×
num of PEs operations per cycle if MAC instruction is utilized. In addition,
the concurrent execution of the CP and PE array exploits the instruction-level
parallelism (ILP) and the overhead is reduced by overlapping the execution of
control and computation operations.

The distribution of kernels between PE array and CP is shown in Fig. 9(a).
With this mapping, the data communication between CP and PE array is min-
imized. To process an image of size w × h, where w is the image width and h



1-a. OTSU (Histogram)
1-b. OTSU (CH & CIA)
2. Binarization
3. Erosion

4-a. Find-Rough-Center
(Row/Column Projection)

5. Weighted Center-of-Gravity

1-c. OTSU (Max. σB2)
4-b. Find-Rough-Center 

(Rough C. & Bond. Box)

Vector

Scalar

Processed 
on PE array

Processed 
on CP

(a)

Grey-Level Image
i_base 0

b_base 45

Binary Image

Distributed Histogram/
CH (Shared Space)

h_base 90

c_base 346

Distributed CIA

601

(b)

Fig. 9. (a) Kernel Assignment; (b) Frame Memory Mapping

Algorithm 1: Erosion
Input : w × h binary image at i base in FM
Output : w × h binary image at i base in FM

1 temp base← address for a two-entry buffer in FM
2 on PE 0 to w − 1 do
3 for i← 1 to h− 1 do
4 CP: temp← temp base + (i mod 2)
5 mem[i base + i− 2]← mem[temp]
6 accu← mem[i base + i]
7 accu← accu + mem[i base + i− 1]
8 accu← accu + mem[i base + i + 1]
9 accu← accu + l mem[i base + i]

10 accu← accu + r mem[i base + i]
11 flag ← accu < 5
12 mem[temp]← flag?0 : 1

13 end
14 mem[i base + h− 2]← mem[temp]
15 CP: temp← 1− temp
16 mem[i base + h− 3]← mem[temp]

17 end

is the image height, w PEs are required (thus w/8 tiles are enabled in our pro-
posed SIMD processor), which indicates that the PE array can provide a peak
throughput of 2w operations per cycle. When a frame is captured and ready for
processing, the processor uses the input shift register to get the frame to the
frame memory (FM) line by line. Each PE processes one column of the frame.
The unused tiles are shut down to save power. Each PE needs 2h+ 512 FM en-
tries to process a column (h entries for the space of the grey-level input image, h
entries for the binary image, 256 entries for the shared space of the distributed
histogram and CH, and 256 entries for the space of distributed CIA). The typical
frame size in our case is 120 × 45 or 160 × 55, so the capacity of the FM is suf-
ficient to process the whole frame. The memory mapping of the frame memory
for a 120 × 45 resolution input is shown in Fig. 9(b).

Algorithm 1 (pseudo code) gives an example of how to program the proposed
SIMD processor. The erosion step in Fig. 4 uses a cross kernel. To calculate one
output pixel, a PE needs to get the four neighboring pixels, two of which are
located in the neighborhood PE s’ FM. These two pixels can be accessed using



Table 3. Cycle Breakdown of SIMD Implementation (image size of 120× 45)

Kernel
MicroBlaze Proposed SIMD

Speed-up
(125 MHz) (125 MHz)

Initialize 2819 1280 2.20×
OTSU: Hist. & CH/CIA 74797 4047 18.5×

OTSU: Max. σ2
B 19936 15840 1.26×

Binarization 70201 225 312×
Erosion 284819 1038 274×

Find-Rough-Center 78832 4601 17.1×
Weighted Center of Gravity 83790 1971 42.5×

Total Cycles 615194 29002 21.2×
Time 4.92 ms 232 µs 21.2×

Table 4. Performance Scalability on the Proposed SIMD Implementation

Kernel 120× 45 160× 55

Initialize 1280 1280 O(1)

OTSU: Hist. & CH/CIA 4047 4097 O(h)

OTSU: Max. σ2
B 15840 15840 O(1)

Binarization 225 275 O(h)

Erosion 1038 1278 O(h)

Find-Rough-Center 4601 5770 O(w+h)

Weighted Center of Gravity 1971 2295 O(h)

Total Cycles 29002 30835

Time 232 µs 247 µs

the neighborhood communication in the proposed processor. For OLED center
detection, erosion is called twice.

As indicated by Fig. 5, the erosion kernel is the most time consuming part in
the MicroBlaze implementation. Table 3 shows that after vectorization, speed-
up of 274× is achieved for a 120× 45 resolution input. And we can also see that
it is no longer a bottleneck on the proposed SIMD processor implementation.

The performance of the complete implementation for a 120 × 45 resolution
input is shown in Table 3. The wide SIMD implementation is able to achieve
a speed-up of 21× (comparing to the reference MicroBlaze implementation),
resulting in an execution time of 232 µs, which is well below the 350 µs budget
for vision processing. In contrast to Fig. 5, finding max σ2

B is now most time
consuming, because it is sequential and can only be done on the CP. Table 4
shows the results of input images with different sizes. We can see that the wide
SIMD implementation has even better scalability than the dedicated FPGA
implementation. The result also shows that it is feasible to achieve > 1000 fps
and < 1 ms latency visual servoing on the proposed wide SIMD processor.

5 Conclusions & Future Work

This work performed a detailed analysis of achieving ultra high frame rate visual
servoing on both FPGA and SIMD processor. A typical industrial application,



organic light emitting diode (OLED) screen printing, was chosen in our analysis.
We optimized the existing vision pipeline for this application so that it is more
robust and more friendly for hardware implementation. Through a proposed
FPGA implementation, we shown that it is very efficient and feasible to achieve
ultra high frame rate visual servoing on FPGA. However, a dedicated FPGA
implementation is usually lack of flexibility, and requires considerable amount of
implementation effort. As an alternative, we also explored the feasibility analy-
sis on the popular SIMD processor. The result shows that our proposed SIMD
processor is very suitable for ultra high frame rate visual servoing. It achieved
a proper balance among efficiency, flexibility, and implementation effort. Com-
pared to the reference realization on MicroBlaze, a 21× reduction on the pro-
cessing time is gained, which greatly enables the performance improvement for
visual servoing applications.

For the future work, we would like to measure and compare the energy con-
sumption in detail. We would also like to enable the fault-tolerance features of
our SIMD processor to deal with the increasingly severe manufacturing variabil-
ity issue.

References

1. A. Abbo and et al. Xetal-II: a 107 GOPS, 600 mW massively parallel processor for
video scene analysis. IEEE Journal of Solid-State Circuits, 43(1):192–201, 2008.

2. J. de Best and et al. Direct dynamic visual servoing at 1 khz by using the product
as 1.5d encoder. In ICCA 2009, pages 361–366, dec. 2009.

3. N. Furukawa and et al. Dynamic regrasping using a high-speed multifingered hand
and a high-speed vision system . In Proceedings of IEEE International Conference
on Robotics and Automation, pages 181–187, 2006.

4. R. Ginhoux and et al. Beating heart tracking in robotic surgery using 500 Hz
visual servoing, model predictive control and an adaptive observer. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 274–279,
2004.

5. Y. He and et al. Real-Time Hough Transform on 1-D SIMD Processors: Imple-
mentation and Architecture Exploration. In ACIVS, pages 254–265, 2008.

6. Y. He and et al. Xetal-Pro: An Ultra-Low Energy and High Throughput SIMD
Processor. In Proceedings of the 47th Annual Design Automation Conference, 2010.

7. S. Kyo and et al. IMAPCAR: A 100 GOPS In-Vehicle Vision Processor Based
on 128 Ring Connected Four-Way VLIW Processing Elements. Journal of Signal
Processing Systems, pages 1–12, 2008.

8. N. Otsu. A threshold selection method from gray-level histograms. Automatica,
11:285–296, 1975.

9. R. Pieters and et al. Real-Time Center Detection of an OLED Structure. In
ACIVS, pages 400–409. Springer, 2009.

10. R. Pieters and et al. High performance visual servoing for controlled m-positioning.
In WCICA, pages 379–384, 2010.

11. Xilinx, Inc. http://www.xilinx.com/tools/microblaze.htm.


